Breaking News

Wi-Fi news from LitePoint

Wi-Fi HaLow is an exciting technology to address application use-cases such as security cameras, industrial monitoring, and a wide range of other indoor and outdoor IoT deployments. Our video series, 3 for 3, provides 3 answers for 3 pressing questions about trends in wireless test. In this video, Adam Smith discusses what is unique about Wi-Fi HaLow, where it is useful to deploy, and wireless test considerations for Wi-Fi HaLow devices.

In the ever-evolving realm of wireless technology, Wi-Fi 7 emerges as a transformative force, poised to redefine our experience with connectivity. A recent webinar, “Wi-Fi Deep Dive,” hosted by RCR Wireless News, shed light on this groundbreaking development by unveiling the capabilities and challenges that Wi-Fi 7 brings to the table. LitePoint’s Adam Smith joined a panel of connectivity experts for a look at the state of standards, products and use cases.

The Leap to Wi-Fi 7

Wi-Fi 7, the successor to Wi-Fi 6/6E, is set to revolutionize wireless networks with its promise to increase throughput and process more data simultaneously. Wi-Fi 7 introduces features that exponentially improve performance and deployment flexibility. But as chip and system capabilities continue their rapid evolution, there is far less room for error. Performance metrics have never been as critical. Panelists shared several key points about this new technology and the excitement building around it:

  • Increased Reliability and Reduced Latency: Wi-Fi 7 introduces Multi-Link Operation (MLO), allowing devices to transmit data over multiple frequencies simultaneously, significantly enhancing reliability and reducing latency. This is crucial in today’s digital environment where speed and stable connections are essential.
  • Faster Data Speed: Wi-Fi 7 features 320-MHz channels and 4096-QAM modulation, pushing data transmission rates further to make Wi-Fi faster and more efficient.

 

 

  • Benefits to Manufacturers and Consumers: For manufacturers, Wi-Fi 7 enables devices with superior connectivity, which is a significant selling point in the competitive tech market. For consumers, enhanced reliability and reduced latency translate to smoother, faster online experiences, be it streaming, gaming or general browsing. This can lead to greater product satisfaction, and, by extension, stronger brand loyalty.

 

  • Simplified Adoption in Products: The adoption rate of Wi-Fi 7 is expected to vary between enterprise and consumer segments. While Wi-Fi 6 deployment is challenging because it needs to coexist with legacy Wi-Fi networks, Wi-Fi 7 introduces features to make it simple to overlay a new network in the presence of a legacy network.

Technical Breakthroughs and Challenges

Wi-Fi 7 offers a substantial improvement in speed over Wi-Fi 6/6E. It utilizes 320-MHz channels compared to the 160-MHz channels of Wi-Fi 6, effectively doubling the data transfer rate in each access opportunity. This enhancement is particularly advantageous for applications requiring consistent, high-speed data transfer, such as video streaming, gaming and virtual reality. With Wi-Fi 7, users can expect smoother experiences with higher image quality, as the faster speeds reduce the need to compromise on quality due to bandwidth constraints. This results in fewer disruptions like dropped packets or visible artifacts, offering a more seamless and engaging user experience.

Despite its technical advancements, the implementation of Wi-Fi 7 faces several challenges:

  • Device Interoperability: One of the key challenges is ensuring interoperability between Wi-Fi 7 devices. This includes the need for new device hardware to support the higher frequency and modulation schemes of Wi-Fi 7.

 

  • Network Management Complexities: Managing a network that supports Wi-Fi 7 is more complex than Wi-Fi 6/6E. This includes handling the increased data rates and ensuring network infrastructure can effectively support higher speeds without compromising stability.

 

  • Interference Management: With Wi-Fi 7’s higher frequencies and broader channels, it becomes more critical to ensure that Wi-Fi signals do not interfere with other devices and networks, especially in densely populated areas or environments with many wireless devices.

These challenges are pivotal for the seamless integration of Wi-Fi 7 into existing infrastructures and its widespread adoption across both professional and personal settings.

What’s Next: Enterprise vs. Consumer Adoption

The adoption of Wi-Fi 7 varies between enterprise and consumer segments. Because Wi-Fi 7 effectively handles congestion and interference, connectivity improves in areas with densely packed devices or overlapping networks (ideal for enterprise applications or larger venues).

While enterprises are eager to leverage Wi-Fi 7 for enhanced network capabilities, consumer devices are only gradually adapting to these higher standards. This is likely to cause a short-term discrepancy in adoption rates that presents an obstacle to realizing the full potential of Wi-Fi 7. The Wi-Fi 7 panel underscored the role of enterprises in driving Wi-Fi 7 adoption, hinting at a future where this technology becomes ubiquitous in both professional and personal settings.

The Cutting Edge is Always Moving

Wi-Fi 7 is poised to drive tangible changes in network speeds, reduced interference and new ways to reduce network latency. Boosting speed and increasing resiliency is critical as the world works to connect more people, places and things. Wi-Fi 7 is more flexible than its predecessor and supports more connections and high-bandwidth applications such as improved cloud gaming and AR/VR applications that require high throughput and low latency.

To learn more about Wi-Fi 7 and how its advanced features and capabilities are set to enhance the way we connect, work and interact, check LitePoint’s 3 for 3 blog here.

The surge in connected devices is unprecedented. According to the Cisco Annual Internet Report (2018-2023), by the end of 2023, two-thirds of the world’s population was served by an internet connection, and nearly half of all internet-enabled devices were communicating using some form of mobile network. But that doesn’t discount the fact that other connectivity technologies, such as Wi-Fi, are equally viable. Cisco estimated that Wi-Fi 6 would grow 13-fold from 2020 to 2023, when it was expected to comprise more than 10 percent of all public Wi-Fi hotspots. A separate report from Ericsson projected that global 5G population coverage reached around 35 percent at the end of 2022 and is slated to increase to about 85 percent as of 2028.

Which connectivity technology will win the battle—and is it a battle at all?

Some industry-watchers believe that this impressive growth has set 5G and Wi-Fi on a collision course. LitePoint holds a different view and believes that the two will operate symbiotically. Of course, historically, cellular and Wi-Fi have served different use cases. Users have typically preferred cellular for on-the-go, long-range communications with guaranteed latency and quality requirements. They’ve perceived Wi-Fi, on the other hand, as a short-range LAN technology offering better data rates. The common thinking pegged Wi-Fi as the better choice for households or sizeable premises as it offers the option to tailor the network for a certain user density and application.

Recently, however, 5G and Wi-Fi 6E/7 have emerged as feature-rich technologies with a healthy interdependency. With rising popularity in the residential broadband market, let’s explore how 5G and Wi-Fi 6E/7 are coming together as well as the prerequisites for successful adoption.

The Impact of 5G and Wi-Fi 6E/7 on Fixed Wireless Access

One prominent use case to emerge from the 5G/Wi-Fi shared environment is the growth of fixed-wireless access (FWA), which offers strong potential to benefit both private and enterprise networks.

For years, private networks relied on fixed broadband for internet connectivity, but this has come at a cost because these networks require heavy capital investment, time and effort. Conversely, FWA leverages traditional broadband with wireless connectivity far more efficiently and affordably because it uses customer premises equipment (CPE).

With FWA, the CPE acts as the router, but instead of connecting to the internet via wired broadband, it uses 5G to connect wirelessly to the internet. Then, the devices within the private network connect to the CPE via standard Wi-Fi. In this capacity, the concept of FWA is only made possible through the newfound synergy between 5G and Wi-Fi.

Benefits of FWA

From an operator’s perspective, there are a few pivotal advantages:

  • Reusability of 5G spectrum and infrastructure: Allows operators to fully exploit existing 5G spectrum and mobile broadband assets to deploy FWA services. Operators can bring down the 5G cost-per-bit delivered to their customers and attain higher returns on infrastructure investment.
  • Scalability: Gives carriers the ability to offer higher data rates and extend connectivity from single to multiple users without requiring infrastructure-level modification. Consumers also benefit: They simply need to access comprehensive, function-packed CPE equipment.

Although these advantages deliver new revenue opportunities for operators, they are contingent upon consumer adoption of the service, the cost of CPE devices and overall time-to-market.

From a consumer’s point of view, the two biggest factors driving FWA adoption are:

  • Performance: In the case of private and enterprise networks, Quality of Service (QOS) plays a crucial role in driving the transition from fixed broadband to fixed wireless. In fact, many operators are now offering “speed tiers” in addition to volume-tariff plans to enable higher monetization and extend services to small/medium enterprises. Here’s where comprehensive testing becomes critical. Testing verifies antenna performance and ensures power calibration and coexistence assessments that have a direct impact on end-to-end throughput and end-user QoS.
  • Cost: The lower upfront cost of CPE installation and monthly service fees will expedite pervasive adoption of FWA. The widespread commercial success of FWA, however, largely rests in the hands of the operators and OEMs given that the cost of development and manufacturing eventually gets passed down to the consumer.

Bringing Down Cost Through Robust Testing

In the case of FWA, operators typically sell white-label CPE products, which are designed and manufactured by a third party. Given their limited control over these products, operators can help to keep both cost and product quality in check through robust test and measurement. Investing in a high-performance RF test solution not only safeguards device quality and brand reputation, but also brings down after-sales expenses, including returns, replacements and service-center costs that result from shipping poor-quality products. These RF test solutions include:

  • Multi-device testing: Parallel test capability in manufacturing is a multi-pronged approach that can improve throughput and minimize test costs while increasing production test efficiency.
  • Turnkey automation test tool: Often, chipset-specific test tools come with the added expense of licensing fees and labor-intensive correlation and debugging. In contrast, an automated test tool that’s pre-validated on chipset-specific libraries can significantly reduce the time and effort of in-house test tool development.

Conclusion

As 5G and Wi-Fi 6E/7 evolve a complementary relationship, new technologies like FWA for private networks are now commercially viable. Ultimately, however, 5G FWA is only as good as the performance of the underlying CPE. Thus, it’s critical to thoroughly test the CPE for considerations such as antenna performance, power calibration, coexistence testing and end-to-end throughput before deployment.

LitePoint is accelerating the future of 5G FWA for enterprises by addressing these needs head-on through our advanced testing equipment for modern CPEs. Learn more about LitePoint solutions for 5G FWA and Wi-Fi 6E/7 through our webinarsvideos, and website. Or email us today with your questions.

O-RAN brings revolution to the wireless industry by introducing openness, interoperability, and disaggregation in network architectures. Our video series, 3 for 3, provides 3 answers for 3 pressing questions about trends in wireless test. LitePoint’s Middle Wen discusses O-RAN (Open Radio Access Network) and explores its unique functionalities that make it different from traditional RAN. He also talks about the benefits of O-RAN and the advantages of O-RAN RU testing using LitePoint’s advanced solutions.

Video Thumbnail

Contact us to learn more about LitePoint’s advanced O-RAN RU testing solutions

 

Ultra-Wideband (UWB) has been gaining popularity since major smartphone makers adopted it as the next-generation, indoor positioning wireless standard, starting back in 2019. Since then, there have been flurries of product announcements, such as UWB tags to assist finding lost keys, and news of novel applications, such as real-time ball location tracking at FIFA World Cup 2022. However, the question remains whether UWB is just hype or here to stay as a default wireless standard like Wi-Fi. We will explore the potential of UWB technology in mission-critical applications such as keyless car entry and digital payment, and the challenges it faces in wider adoption.

UWB in Keyless Car Entry

In 2022, Car Connectivity Consortium (CCC) announced that it has adopted UWB as a complementary technology to Bluetooth® Low Energy for secure, keyless entry in its Digital Key Release 3 specification.  While Bluetooth® Low Energy-based key fobs and apps have been widely adopted, concerns about possible relay-attacks have been raised. In a viral video, a Tesla was remotely unlocked and driven off with a laptop with an attached Bluetooth® relay device, and it was explained that this security vulnerability can affect any Bluetooth® Low Energy-enabled keyless entry vehicles. UWB, which relies on its nanosecond pulses to provide centimeter-level accuracy distance measurements, can ensure that the signal is coming from a legitimate, physically-present source, not from a boosted, relayed signal. With UWB providing added security, Bluetooth® Low Energy and UWB can work together to provide a reliable and secure keyless entry for ever-security conscious automotive industries.

 

ABI Research (2022)

 

UWB in Wireless Payment

As the smartphone attach rate keeps rising, UWB is also being considered as an alternative or complimentary technology to Near Field Communication (NFC). Contactless payment has been steadily gaining acceptance, as more smart devices such as smartphones and smart watches have been shipped with NFC, now reaching more than a 50% attach rate in smartphones. COVID-19 in the last 3 years has accelerated the adoption of contactless payment, both NFC- and QR code-based, to avoid handling of physical cash and credit cards. UWB can advance contactless payment even further; UWB can revolutionize the payment industry, enabling consumers to pay for the groceries and unlock their cars, all without taking out a credit card, a key or a phone. With its centimeter-level accuracy, UWB can ensure you are paying for your own groceries, not for the person in the next checkout lane.

Bluetooth® and UWB

While UWB provides unparalleled accuracy and security for mission critical applications, Bluetooth® is still a practical option for some location-based services. Bluetooth® SIG is exploring new ways to improve distance measurement accuracy and security such as Channel Sounding (CS), previously known as High Accuracy Distance Measurement (HADM). In CS, Bluetooth® signals of two or more frequencies are used to calculate the distance between two Bluetooth® devices based on the observed relative phase differences of those signals. Unlike the Received Signal Strength Indicator (RSSI) method, previously used for Bluetooth® distance measurement, which relies on the relative power level of the received signal, it is less susceptible to relay attacks and can provide better, meter-level accuracy. Such accuracy could have been previously achieved with multiple antennas, with triangulation, but the single-antenna implementation of CS is attractive in terms of reducing hardware cost. Furthermore, one can use a metric called Normalized Attack Detector (NAD) in Bluetooth® Channel Sounding to identify and quantify sudden changes in the RF environment. Comparing the received packet against the expected packet signal, a NAD metric value is calculated as the probability that an attacker is present. Given its 100% attach rate to smartphones, when CS is finalized and adopted, it will likely enable many real time location services (RTLS) that require distance measurements within a few meters, such as indoor navigation, asset and personnel tracking. However, UWB will likely continue playing the primary role, for mission critical applications that demand better accuracy and security such as contactless payment, keyless car access, and digital hotel room key.

 

 

Challenges Faced by UWB

UWB’s 500 MHz or wider bandwidth inversely produces the nanosecond pulses that uniquely deliver the unprecedented distance measurement accuracy. However, the wideband width also leads to more complexity in the design and higher power consumption. It is more regulated for emission limits as it operates in the licensed band per Part 15 of FCC Rules than its narrow-band counterparts that operate in the unlicensed 2.4 GHz band. To mitigate these challenges, location and security applications will keep relying on some of the initial discovery and synchronization on narrow band wireless standards such as Bluetooth® to offload communication, reserving UWB usage for mission-critical distance ranging. Rather than competing for convergence, wireless standards must collaborate with each other in providing the best user experience for a given use case. In other words, we will likely see more, not fewer, wireless standards integration in smartphones and cars, and UWB will likely become the main source of the precise, secure location-based communication. For that, UWB devices’ utmost priority will be accuracy quality.

Conclusion

UWB technology has the potential to revolutionize mission-critical applications such as keyless car entry and digital payment, providing unparalleled accuracy and security. While other wireless standards like Bluetooth® remain practical options for some location-based services and a critical partner in offloading traffic, UWB will likely play the primary role in security-centric applications. Despite some of the challenges UWB faces, collaboration with other wireless standards can ultimately help overcome these challenges to provide the best, integrated wireless experience for users.

By LitePoint

April 20, 2023

In today’s world, connectivity has become almost as critical in our everyday lives as electricity and water. Wireless connectivity is integrated into every aspect of our lives, including how we live, work, and play. This puts companies and manufacturers under immense pressure to bring consistent, reliable products to market quickly. Quality and performance are business imperatives for these companies to maintain consumer confidence and build trusted brand reputations.

Wireless Test Must Evolve as Technologies Become More Complex

When the pandemic hit in 2020, internet consumption and real-time connection rates skyrocketed, also driving consumers to upgrade their devices. Since then, the use cases and exponential growth rate of data usage have only  increased.

To address emerging applications such as high-definition video, industrial automation, immersive experiences, and gaming, the Wi-Fi 7 standard is being defined to offer high throughput and low latency. 5G technology is also evolving to improve coverage, capacity, and connectivity.

As technologies evolve, wireless testing must continually evolve to keep up with challenging device environments, ever more complex technologies, and pressing market demands. Final testing at manufacturing is a critical aspect of any complete testing strategy because products can have different RF performance in the final form factor vs. in the component phase. Only testing in the lab, at device verification, and end-of-line manufacturing can ensure the product that reaches the end user will work the way it was designed, every time.

Efficiency and Security

The Ericsson Mobility report showed that global 5G subscriptions surpassed the one billion milestone at the end of 2022. With the growing rate of adoption and increased 5G device complexity, test strategy must be modified to ensure quality device performance, while still preserving test time and cost. Learn more about building a 5G testing strategy.

From a consumer mindset, upholding the promise of device security is vital to building trust. Ultra-Wideband (UWB) technology is advancing to address security vulnerabilities in access control, location-based services, and device-to-device communication. To meet new capabilities, compliance verification and performance validation are necessary in test.

Trusted Brands 

According to the Salsify 2023 Consumer Research Report, 82% of shoppers stay loyal to brands based on product quality. Moreover, 61% of consumers state they would pay more to buy products or services from a brand name they trust. For businesses selling wireless devices, this credibility is dependent on the wireless technology in each product functioning as designed and intended in the consumers hands, every time. To ensure success, reliable testing is essential in lab, DVT, and manufacturing.

Consumers are always on the lookout for the latest technologies. In a competitive marketplace, being the first company to introduce a cool, new device to market significantly impacts the brand’s reputation.

Simplifying Wireless Test

With LitePoint’s fast-to-deploy and easy-to-use test solutions, businesses can focus on making the next, next big thing. Since its founding over 20 years ago, LitePoint has had one overriding principle: making wireless test simple. In a complex and ever-changing industry, LitePoint simplifies wireless test so companies can get the most innovative wireless technologies to market before their competition.

 

Conclusion

Brands only get one chance to have a successful product launch. Consumers are always waiting to get their hands on the next big thing, and companies need reliable wireless testing to guarantee each device performs as intended in their customers’ hands. Building a reliable test strategy ensures product quality and builds the foundation of trust for businesses selling wireless devices. Each new feature added to a device must work seamlessly to protect reputation and uphold loyalty.

Contact us to learn how LitePoint’s simple, optimal wireless test solutions will bring your innovative products to market with confidence.

Wi-Fi 7 will be the fastest Wi-Fi generation, with throughput higher than 30 Gbps and very low latency. LitePoint is launching a new video series, 3 for 3, providing 3 answers for 3 pressing questions about trends in wireless test. To kick us off, Adam Smith, Director of Marketing at LitePoint, examines what changes Wi-Fi 7 brings, new features in the technology, and what you need to know from a test perspective.

3 for 3: Wi-Fi 7, A New Era of Connectivity – LitePoint

LitePoint’s Rex Chen is the author of this blog post based on his webinar discussing the evolving wireless networks within automobiles –for communication within and outside the automobile. This post focuses on the emerging C-V2X wireless communications standards and how to maintain required performance and reliability. 

C-V2X and the Future of Automotive Connectivity

The car of the future will increasingly depend on multiple wireless networks – one for communication within the vehicle and one for communications between the car and the external environment. Quality connectivity is important for both of these networks, but the external network – called the cellular vehicle to external environment (C-V2X) – has several unique challenges that we will explore in this blog post.

Before I go into depth on C-V2X, let’s talk a bit about technologies involved with inside the car networks. The two most established technologies are Bluetooth and Wi-Fi which are used to  enable hands-free infotainment dash controls, mobile device connectivity, Internet access and other data features. The relative newcomer to internal data networking is ultra-wideband (UWB), which is an emerging wireless standard that offers high precision location services and security. In a car key fob, for example, it provides a much more secure way to lock and unlock the car.

C-V2X

While these technologies will make the mark in automotive applications and infotainment systems, lets dive further into C-V2X for external connectivity. The X is used as a wild card to represent the communication network outside the vehicle – including other cars, roadside units, and pedestrians.  C-V2X standards are part of the 3GPP standards that govern 5G networking.

The 3GPP standard has had C-V2X communications support since Release 14 (2017). This capability was basic and served as a way to communicate safety messages between vehicles. Today, customer expectations are more sophisticated and there is a need for more throughput and reliability features.

3GPP Release 16 brought with it important changes for C-V2X connectivity via enhancements made to 5g New Radio (NR) standards that are used in C-V2X applications. These enhancements made NR even more reliable and efficient. The changes also deliver better support for MIMO antennas and enhancements to Ultra Low Latency Communication (URLLC).

The standard also includes the NR-based sidelink network that offers direct communications with other vehicles without passing through the cellular basestation. This enables safety features such as collision avoidance and cooperative lane changing. Recently, in the United States, the FCC dedicated the 5.9 GHz spectrum band for intelligent sidelink-based direct link transportation systems. This spectrum has a fairly short transmission range of about 1 km, which makes it good for disseminating information like car speed, location, braking speed and other safety data.

One sidelink use case that is getting a lot of attention is “platooning,” where trucks or cars travel together connected by the network. Platooning only works with networks that offer near zero packet drops, instantaneous latency of 10 milliseconds or less and extremely high reliability.

Sidelink networks also feature an adaptable modulation and coding system (MCS) that enables the system to adapt packet length and data throughput  depending on the characteristics of the vehicle and whether it is traveling at slow, medium or fast speed.  This means that the system can adapt to a car’s speed; for example, if a braking event happens at 50 mph, the network will see a lot more messages as all of the cars on that road report that event. Thus, it’s important to propagate data more frequently.

ADAS

One important application that C-V2X enables is advanced driver assistance systems (ADAS). ADAS is the foundation for self-driving cars.  ADAS technology is continually being refined as it passes through multiple stages and levels of technology build out before it becomes a standard feature. Today’s ADAS are built using a lot of the complementary sensing technologies – such as cameras, radar and lidar – that will be required for autonomous vehicles.

Network Quality is Essential

Lives are on the line as people drive in their C-V2X-enabled cars, which means thorough testing is essential. Car manufacturers can either build their own C-V2X functionality by integrating the required RF components, or they can use pre-engineered RF modules that include all the required ICs and antennas. Either way, testing is required.

The picture above shows that the test flow for sub 6 GHz and millimeter wave frequencies starts with the SMT board that undergoes conductor mode testing. In these tests, an antenna is connected to the board so that calibration and verification tests can run. These tests cover transmission, power, signal quality and EBM. From the receiver side, there are sensitivity tests.

After the chip level testing is complete, it is time for the module to be tested, which includes the actual antenna that will be used in the final product. This will be done using a radiated test also known as an over the air (OTA) test.

LitePoint C-V2X Test Systems 

Some of LitePoint’s key products for testing C-V2X applications include the IQcell-5G, which is a sub-6Ghz signaling test system that tests call establishment, antenna performance and measures throughput.

This test system is a simple-to-use 5G signaling test solution designed for end-of-line manufacturing, software regression and functional performance testing. The flexible system can validate RF parametric measurements, end-to-end throughput, MIMO, mobility, and user experience testing across cellular and cellular-capable connectivity devices such as smartphones, CPEs, laptops, tablets, hotspots and cars.

The IQxstream-5G FR1 tester is another option that offers multi-DUT connectivity ideal for production environments. This non-signaling tester covers 5G along with 4G LTE and other legacy cellular technologies covering the low band frequency range.

C-V2X technology offers exciting possibilities for enhanced safety and fuel efficiency, but these networks need to be reliable and high performance. For more of my thoughts on this topic, watch my recent webinar titled: The Future of Automotive Connectivity and Communication Test Solutions.

By Rex Chen

August 18, 2022

LitePoint’s Rex Chen is the author of this blog post based on his webinar discussing the evolving wireless networks within automobiles –for communication within and outside the automobile. This post focuses on the emerging C-V2X wireless communications standards and how to maintain required performance and reliability. 

C-V2X and the Future of Automotive Connectivity

The car of the future will increasingly depend on multiple wireless networks – one for communication within the vehicle and one for communications between the car and the external environment. Quality connectivity is important for both of these networks, but the external network – called the cellular vehicle to external environment (C-V2X) – has several unique challenges that we will explore in this blog post.

Before I go into depth on C-V2X, let’s talk a bit about technologies involved with inside the car networks. The two most established technologies are Bluetooth and Wi-Fi which are used to  enable hands-free infotainment dash controls, mobile device connectivity, Internet access and other data features. The relative newcomer to internal data networking is ultra-wideband (UWB), which is an emerging wireless standard that offers high precision location services and security. In a car key fob, for example, it provides a much more secure way to lock and unlock the car.

C-V2X

While these technologies will make the mark in automotive applications and infotainment systems, lets dive further into C-V2X for external connectivity. The X is used as a wild card to represent the communication network outside the vehicle – including other cars, roadside units, and pedestrians.  C-V2X standards are part of the 3GPP standards that govern 5G networking.

The 3GPP standard has had C-V2X communications support since Release 14 (2017). This capability was basic and served as a way to communicate safety messages between vehicles. Today, customer expectations are more sophisticated and there is a need for more throughput and reliability features.

3GPP Release 16 brought with it important changes for C-V2X connectivity via enhancements made to 5g New Radio (NR) standards that are used in C-V2X applications. These enhancements made NR even more reliable and efficient. The changes also deliver better support for MIMO antennas and enhancements to Ultra Low Latency Communication (URLLC).

The standard also includes the NR-based sidelink network that offers direct communications with other vehicles without passing through the cellular basestation. This enables safety features such as collision avoidance and cooperative lane changing. Recently, in the United States, the FCC dedicated the 5.9 GHz spectrum band for intelligent sidelink-based direct link transportation systems. This spectrum has a fairly short transmission range of about 1 km, which makes it good for disseminating information like car speed, location, braking speed and other safety data.

One sidelink use case that is getting a lot of attention is “platooning,” where trucks or cars travel together connected by the network. Platooning only works with networks that offer near zero packet drops, instantaneous latency of 10 milliseconds or less and extremely high reliability.

Sidelink networks also feature an adaptable modulation and coding system (MCS) that enables the system to adapt packet length and data throughput  depending on the characteristics of the vehicle and whether it is traveling at slow, medium or fast speed.  This means that the system can adapt to a car’s speed; for example, if a braking event happens at 50 mph, the network will see a lot more messages as all of the cars on that road report that event. Thus, it’s important to propagate data more frequently.

ADAS

One important application that C-V2X enables is advanced driver assistance systems (ADAS). ADAS is the foundation for self-driving cars.  ADAS technology is continually being refined as it passes through multiple stages and levels of technology build out before it becomes a standard feature. Today’s ADAS are built using a lot of the complementary sensing technologies – such as cameras, radar and lidar – that will be required for autonomous vehicles.

Network Quality is Essential

Lives are on the line as people drive in their C-V2X-enabled cars, which means thorough testing is essential. Car manufacturers can either build their own C-V2X functionality by integrating the required RF components, or they can use pre-engineered RF modules that include all the required ICs and antennas. Either way, testing is required.

The picture above shows that the test flow for sub 6 GHz and millimeter wave frequencies starts with the SMT board that undergoes conductor mode testing. In these tests, an antenna is connected to the board so that calibration and verification tests can run. These tests cover transmission, power, signal quality and EBM. From the receiver side, there are sensitivity tests.

After the chip level testing is complete, it is time for the module to be tested, which includes the actual antenna that will be used in the final product. This will be done using a radiated test also known as an over the air (OTA) test.

LitePoint C-V2X Test Systems 

Some of LitePoint’s key products for testing C-V2X applications include the IQcell-5G, which is a sub-6Ghz signaling test system that tests call establishment, antenna performance and measures throughput.

This test system is a simple-to-use 5G signaling test solution designed for end-of-line manufacturing, software regression and functional performance testing. The flexible system can validate RF parametric measurements, end-to-end throughput, MIMO, mobility, and user experience testing across cellular and cellular-capable connectivity devices such as smartphones, CPEs, laptops, tablets, hotspots and cars.

The IQxstream-5G FR1 tester is another option that offers multi-DUT connectivity ideal for production environments. This non-signaling tester covers 5G along with 4G LTE and other legacy cellular technologies covering the low band frequency range.

C-V2X technology offers exciting possibilities for enhanced safety and fuel efficiency, but these networks need to be reliable and high performance. For more of my thoughts on this topic, watch my recent webinar titled: The Future of Automotive Connectivity and Communication Test Solutions.

Why UWB Certification Matters
Looking back at the history of great wireless innovations, the common factor that has launched technologies on a successful path is the broad ecosystem built around them. The success that Wi-Fi and Bluetooth® have enjoyed over the past 20 years is mostly due to the fact that devices from any maker or brand simply work together. An incomplete, erroneous or proprietary implementation of a standard degrades device performance.  In the worst-case scenario, the lack of compatibility completely prevents device-to-device communications. Conversely, the assurance of interoperability increases consumer confidence and ensures enhanced user experiences.

Industry consortia such as the Wi-Fi Alliance® (for Wi-Fi) or Bluetooth SIG® (for Bluetooth®) have ensured device’s interoperability through technical requirements, test specifications, and certification programs. These consortia are made of diverse companies working together towards the common goal of increasing and encouraging a widespread adoption of their respective technologies. The FiRa™ Consortium has undertaken this task for Ultra-Wideband with the mission to bring seamless, secure, and precise location awareness for people and devices. FiRa unites key industry players working together to deliver the building blocks needed to ensure a broad adoption of UWB, with over 120 members, including all the top handset manufacturers, plus market leaders across chipsets, networking, secure access, and consumer technology. LitePoint was amongst the first companies to join FiRa at its inception in 2019.  An important aspect of the consortium’s mission is the development of specifications and certification programs fostering interoperability among UWB chipsets and UWB-enabled devices, and solutions.

Source: FiRa Consortium

FiRa Certification Program
In October 2021, FiRa launched its certification program aimed at driving interoperability between UWB devices. For a device to be FiRa Certified™ and display the FiRa Certified logo, it must meet the FiRa-specified MAC and PHY Conformance Test Specifications and the MAC/PHY Interoperability Test Specification. For certification, FiRa members submit their devices to an independent authorized test lab (ATL) and follow the process described on the consortium’s website.

Source: FiRa Consortium

PHY Conformance Testing
UWB RF Physical layer (PHY) conformance verification is an important foundational step to drive an interoperable device ecosystem. The PHY Conformance test validates that chipsets and devices conform to FiRa’s UWB PHY Technical Requirements and PHY Conformance Test Specification.

FiRa’s PHY Technical Requirements are based on the IEEE 802.15.4 standard and the 802.15.4z amendment. The requirements further build on what the IEEE has already established for HRP (High Repetition Pulse) mode to define a profiled feature set and performance requirements.

Source: FiRa Consortium

FiRa’s PHY Conformance Test Specification defines test cases that verify UWB devices’ conformance to the PHY Technical Requirements. It includes UWB device’s transmitter and receiver tests to validate compliant formatting and reception of UWB frames.

Transmitter conformance tests:

  • Transmitter frame formatting validation: SYNC, SFD, STS, PHR, DATA, CRC
  • Power Spectrum Density mask verification
  • Baseband impulse response
  • Carrier frequency tolerance
  • Pulse timing verification
  • Transmitter signal quality

Receiver conformance tests:

  • Receiver sensitivity
  • Receiver first path dynamic range
  • Receiver frame decoding verification: SYNC, SFD, STS, PHR, DATA, CRC
  • Receiver Dirty packet test (negative testing)

UWB Devices Under Test (DUT) must successfully pass all transmitter and receiver test cases for FiRa certification.

FiRa PHY Conformance Test Tool (PCTT)
LitePoint’s PHY conformance test platform has been developed based on the PHY Conformance Test Specification and validated by the FiRa Consortium. This test platform can be selected by ATLs for PHY Conformance Certification testing or by FiRa members as part of pre-certification testing. This complete solution includes both the hardware platform as well as test programs to control the tester and Device Under Test (DUT) using the UWB Command Interface (UCI).

The Complete PCTT setup is comprised of the following elements:

  • IQgig-UWB platform: it integrates UWB signal generation and analysis and is capable of performing all DUT transmitter and receiver test cases.
  • IQfact+ software: it provides complete test automation including tester control, DUT control, and data collection. Pass/Fail results are provided for each test case along with detailed test logs that can be used for troubleshooting.
  • The UWB DUT is controlled using the UWB Command Interface (UCI).
  • The physical connection between the PCTT and the DUT is a vCOM interface as specified by FiRa

UWB Testing Beyond Certification
Beyond certification, the IQgig-UWB platform can be deployed in R&D for conducted or over-the-air (OTA) device characterization as well as high-volume production, making it the perfect platform to enable a cost-effective, seamless transition from the lab to production.

To learn more about FiRa’s certification process watch a replay of our webinar co-hosted by Comarch, FiRa and LitePoint:

https://www.litepoint.com/knowledgebase/what-you-need-to-know-about-fira-certification-for-uwb-enabled-devices/

To learn about our turnkey PCTT certification solution:

https://www.litepoint.com/knowledgebase/fira-consortium-ultra-wideband-uwb-phy-conformance-test-solution-with-iqgig-uwb-and-iqfact/