X Reality (XR), short for extended reality, is the convergence of physical world and digital world experiences. XR is used to describe immersive applications including augmented reality (AR), mixed reality (MR), and virtual reality (VR) – used to enhance or simulate real-life experiences. XR technologies extend the reality we experience by either merging the virtual and real worlds or by creating fully immersive experiences.
Deployment of XR applications in education, healthcare, and industrial settings are contributing to strong momentum for XR, with the market expected to grow from $33 billion to $125 billion by 20261. Virtual reality alone has seen a 224% growth since October 20192 as more people upgraded their smart entertainment devices to provide more immersive experiences while working, learning, and socializing from home.
Wi-Fi® will have a significant impact on delivering the full potential of the XR market, providing high-performance connectivity for augmented, mixed, and virtual reality. Work is now underway in Wi-Fi Alliance® to promote innovation and further boost Wi-Fi to deliver connectivity that will help build connections between physical and digital worlds. Recently, Wi-Fi Alliance hosted an XR Opportunity for Wi-Fi discussion featuring panelists from Cisco, Facebook Reality Labs, Microsoft, and Qualcomm. Panelists shared insight into the benefits of Wi-Fi for XR devices, while also acknowledging some of the challenges that lie ahead. Key insights from the discussion include:
Extended reality is transforming our daily lives. New XR use cases for education, healthcare, and business will allow students, medical professionals, and employees to have more impactful, personal, and unique experiences.
Panelist Bruno Cendon Martin, Director of Wireless Technologies at Facebook Reality Labs, believes that there are three walls in XR: the physical, the augmented, and the virtual. The physical is what we experience in day-to-day life. The augmented wall is one with layers. A virtual wall is one that “transcends time and space” and allows you to transition back in forth between realities. Development of new technologies, including portal systems and other Wi-Fi devices, will enable users to be transported through technology and gain a physical presence in another location. Wi-Fi visual headsets and other innovations on the horizon will allow users to be fully immersed in an entirely different world without leaving their home.
Wi-Fi will improve the infrastructure of XR. Advancements coming to Wi-Fi will help build connections across the physical and digital worlds. Panelist Dr. Shirin Ebrahimi-Taghizadeh, Principal Software Engineering Lead for Wireless and Embedded Systems at Microsoft shared that enabling services and solutions extremely relies on having a very stable and low latency wireless solution. Wi-Fi technologies, such as Wi-Fi 6 and Wi-Fi 6E will help provide connectivity to satisfy these demands. Microsoft’s Azure Remote Rendering, for example, allows designs to come to life for developers wanting to collaborate and see the richness of details without physically creating a prototype. Wi-Fi will further allow companies to produce products that surpasses the boundaries of physical limitations.
XR will have a strong impact beyond the workspace. Matt MacPherson, CTO of Wireless at Cisco, points to XR’s impact on various types of education systems, including elementary education, higher education, and health education. With XR becoming the forefront for many teaching efforts, testing and other educational practices are being revolutionized. VR-type implementations, for example, allow students to look at the same image and learn in the same way without needing to be in the same physical location. As XR capabilities grow exponentially, advancements will further advance this use case and allow for more education possibilities. Educators expect a bright future for Virtual Environment Technology (VET) because of the increasing need for tools that will help ease the process of learning and bring it closer to the students’ interests.
Wi-Fi can deliver high-quality, wireless XR experiences. Shishir Gupta, Product Director of XR Connectivity, 6G, and Wireless Positioning at Qualcomm believes that premium XR experiences require high-performance Wi-Fi for four main reasons. The first is low-latency for responsive and lag-free experiences. The second is extreme reliability with advanced features and optimization for sustained XR-class performance. The third is power efficiency to assist rapid and efficient data transfers with advanced power save features. Finally, multi-gigabit speeds allow for instantaneous, massive data exchange which is necessary in XR.
There are attractive opportunities for XR driven by consumer, education, healthcare, and industrial applications. Wi-Fi is already a strong technology player in these markets, making it a natural choice for the future of XR. Wi-Fi Alliance members are working to further the role of Wi-Fi in XR and are working closely with the XR ecosystem to deliver key Wi-Fi applications for augmented, mixed, and virtual reality. Companies involved in developing Wi-Fi solutions for the XR space are encouraged to get involved in Wi-Fi Alliance to help propel the industry forward.
To balance the English learning resources between urban and rural area, the Education Bureau of Kaohsiung City Government has invested in the creation of the “Kaohsiung English Van”, which breaks geographical restrictions and provides mobile teaching services to make up for the lack of English education resources in rural areas. The Kaohsiung English Van is equipped with advanced information equipment. Teachers can utilize VR and live broadcast to create a smart and interactive learning environment, a l l owing rural students to practice English dialogue naturally, expanding the effectiveness of educational resources, and promoting bilingual and international education.
THE CHALLENGES
To ensure that all the information equipment on the Kaohsiung English Van can operate smoothly in remote areas, and that students and teachers can have a stable internet connection for smart mobile teaching. After comprehensively evaluating several competing WLAN solutions, the Education Bureau of Kaohsiung City Government found that Edgecore Network’s WLAN solution best fulfilled their needs.
THE SOLUTION
Edgecore’s solution includes two OAP100 to provide 4G Uplink and point-to-point bridging up to 3 km. OAP100 is an 11ac Wave2 outdoor wireless access point specially designed for enterprise and Public Wireless Local Area Network (PWLAN) application. The transmission rate can reach 1.2 Gbps, providing high-speed and stable wireless network access. With the built-in CAT4 LTE module slot, OAP100 provides a smooth and high-performance network connection through the 4G LTE network card. The built-in chip-type high-power wireless amplifier can enhance the signal stability and improve the latency, and significantly enhance throughput performance, making OAP100 the best choice for long-distance bridging required for mobile teaching. In addition, the IP68-rated, rust-resistant plastic housing of OAP100 ensures that it can provide stable network services to support mobile teaching regardless of the weather.
The solution also includes an ECW5410-L as an in-vehicle wireless access point to provide local wireless access. ECW5410-L is a concurrent dual-band 802.11ac Wave 2 high-density access point. Featuring dual 4×4 MU-MIMO radios can support up to 256 concurrent users, and up to 600 Mbps and 1.73 Gbps data rates for both 2.4GHz and 5GHz bands, ensuring that teachers and students can enjoy smooth and reliable connection at the same time .
With ecCLOUD cloud controller, IT managers can centrally monitor the overall network environment, reduce the complexity and difficulty of deployment and management, and reduce labor and cost expenditures, greatly improving the overall effectiveness of the mobile teaching network.
School’s IT infrastructure is extremely important for digital learning and teaching. Through the cooperation, Edgecore has successfully assisted the Education Bureau of Kaohsiung City Government to lay a solid foundation for a smart learning environment with the Kaohsiung English VAN. As to stimulate the learning momentum of the new generation. In addition to Taiwan, Edgecore also has extensive experience in building large-scale campus networks in the United States, India, Turkey and other countries, and continues to assist educational institutions to create the best learning environment through technological innovation.
DEPLOYED PRODUCTS
About Edgecore Networks
Edgecore Networks Corporation is a wholly owned subsidiary of Accton Technology Corporation, the leading networking ODM. Edgecore Networks delivers wired and wireless networking products and solutions through channel partners and system integrators worldwide for data center, service provider, enterprise, and SMB customers. Edgecore Networks is the leader in open networking, providing a full line of open 1G-400G Ethernet OCP Accepted™ switches, core routers, cell site gateways, virtual PON OLTs, optical packet transponders, and Wi-Fi access points that offer choice of commercial and open source NOS and SDN software.
For more information, visit wifi.edge-core.com or contact sales@edge-core.com.
octoBox software 2.0 brings new dashboard mode, improved graphics and multiPerf® traffic tool
The new software leverages the power of parallel databuses and processing built into all the octoBox testbeds, allowing them to be used for emulation of multipoint-to-multipoint test scenarios involving dozens of real devices, while providing real-time feedback of the test progress and results.
Fanny Mlinarsky, founder of octoScope, and Senior Vice President of Wi-Fi Products at Spirent, said “octoBox software 2.0 greatly improves the productivity of the wireless test engineer and solidifies octoScope’s position as the easiest to use testbed in the Wi-Fi industry.”
octoScope is a Spirent company.
What is Wi-Fi Roaming?
Have you ever wondered how your WiFi connection follows you around the building? This useful networking feature is called Roaming. WiFi roaming occurs when a wireless client device moves outside the usable range of one router or access point (AP) and connects to a different one. The client device automatically switches from one router (or access point) to another extender or mesh access point as needed to provide seamless connectivity. In this ideal scenario, you will not experience the inconvenience of choppy video calls and low download speeds when walking from one side of a building to another.
How does WiFi Roaming work?
In theory, WiFi roaming works similarly to cell phone roaming. You need to have multiple access points throughout the building – be it a hospital, school, workplace, etc., so that as soon as you’re near the outer limits of one of the access point’s range, your device is already in the range of another. In order to work seamlessly, all of the WiFi access points in the network need to be configured to use the same SSID (or network name) and the same login credentials.
However, WiFi roaming is decided by the client device, like your cellphone or laptop. WiFi Standards organizations (e.g. IEEE802.11 and WiFi Alliance) do not specify when or how a client device should roam. The wireless client device is responsible for deciding if it needs to roam and then detecting, evaluating, and roaming to another access point. There are 3 phases to this process:
Benefits of WiFi Roaming
Mobility is an essential feature of WiFi networks, but building a WiFi network that provides continuous coverage throughout a building can be difficult, especially as coverage demands grow. If you have ever experienced a sudden drop in connection speed while walking across a building, you know what we mean. The issue that most likely caused the drops in your connection was the network’s failure to support roaming. This issue can be solved by deploying the right network design.
WiFi Roaming allows you to freely move from room to room while your device automatically roams from one access point to another as necessary, intuitively choosing the strongest access point without dropping its WiFi signal, providing seamless connectivity. While there’s always a brief interruption when switching between networks – around half a second – when roaming, the duration of that interruption can be reduced to a minimum if the devices use the same WiFi network names (SSID’s), WiFi channels, and network keys.
Common Issues with Wi-Fi Roaming
There are two main issues when it comes to Wi-Fi Roaming:
Installing more access points in an area can potentially increase the chances of a client device connecting to the optimal access point.
However, proper WiFi roaming requires more than just good signal strength throughout coverage areas. A balance between the coverage of access points on both the 2.4 and 5 GHz bands is needed to make roaming work properly.
How to Optimize Your Network
For WiFi Roaming to be beneficial for the user, the user’s device must connect to the optimal access point, and the handover process between access points must be smooth. The user device should be connected to a particular WiFi network and should constantly be scanning for other access points with the same SSID. If an access point with a better signal is found, the user device should seamlessly connect to it and drop the previous connection. This handover should not result in a poor experience for the end-user.
As mentioned earlier, installing more access points can be an easy fix, but it doesn’t always work. Ensuring WiFi roaming is successful requires more than just strong signal coverage. It requires each access point’s coverage to be balanced on both the 2.4 and 5 GHz bands. But what does have “balanced” access points mean?
To optimize and balance access points, you can consider these tips:
Did you know that Mercku M2 and Mercku M6 routers support WiFi roaming?
Learn more about this and more on Mercku.com.
For more information about Mercku’s Connectivity Suite, our hardware and how you can partner with Mercku, please reach out to the team at connect@mercku.com
Thank you for reading our blog! Mercku Blogs covers the latest in wireless technology – subscribe to our newsletter to make sure you don’t miss our newest releases!
Partnering to Make Wi-Fi Available Everywhere
BlueportiQ, a wireless cloud-software manufacturer, today announced it has become a member of the Wireless Broadband Alliance (WBA). This membership underscores BlueportiQ’s commitment to the delivery of advanced Wi-Fi connectivity and robust security globally.
Founded in 2003, the vision of the Wireless Broadband Alliance (WBA) is to drive seamless, interoperable service experiences via Wi-Fi within the global wireless ecosystem. WBA’s mission is to enable collaboration between service providers, technology companies, cities, regulators and organizations to achieve that vision.
“We are delighted to welcome BlueportiQ to WBA membership,” said Tiago Rodrigues, CEO of WBA. “The BlueportiQ team shares our collective goals and we believe they will benefit from collaborating with the wider membership of WBA to provides secure, automatic and friction-free Wi-Fi around the world.”
BlueportiQ provides top-tier technology across multiple markets, including multifamily, hospitality, carriers, commercial, healthcare, and more. Its cloud-hosted software solution, VAULT™, provides global Wi-Fi roaming throughout multiple business locations over secure Wi-Fi access. VAULT enables frictionless onboarding Wi-Fi access to multiple user types when visiting these locations.
“BlueportiQ is humbled to join the WBA,” said Urbino Lobo, VP Sales EMEA for BlueportiQ. “We look forward to collaborating with the WBA workgroups to share our experience and use cases towards the mutual objective of simplified roaming technologies through seamless and interoperable Wi-Fi connectivity for all people globally.”
VAULT makes use of existing technology and does not require unique device onboarding or specialized Wi-Fi infrastructure compliance.
About BlueportiQ
BlueportiQ is a cloud-software manufacturer based in Massachusetts, USA. They develop unique patent-pending technology for device connectivity into Wi-Fi networks at any location in the globe. BlueportiQ is a recognized Wi-Fi NOW partner for roaming technologies.
About the Wireless Broadband Alliance
Wireless Broadband Alliance (WBA) is the global organization that connects people with the latest Wi-Fi initiatives. Founded in 2003, the vision of the Wireless Broadband Alliance (WBA) is to drive seamless, interoperable service experiences via Wi-Fi within the global wireless ecosystem. WBA’s mission is to enable collaboration between service providers, technology companies, cities, regulators and organizations to achieve that vision. WBA’s membership is comprised of major operators, identity providers and leading technology companies across the Wi-Fi ecosystem with the shared vision.
WBA undertakes programs and activities to address business and technical issues, as well as opportunities, for member companies. WBA work areas include standards development, industry guidelines, trials, certification and advocacy. Its key programs include NextGen Wi-Fi, OpenRoaming, 5G, IoT, Testing & Interoperability and Policy & Regulatory Affairs, with member-led Work Groups dedicated to resolving standards and technical issues to promote end-to-end services and accelerate business opportunities.
The WBA Board includes Airties, AT&T, Boingo Wireless, Broadcom, BT, Cisco Systems, Comcast, Deutsche Telekom AG, Google, Intel, Reliance Jio, SK Telecom and Viasat. For the complete list of current WBA members, click here.
Follow Wireless Broadband Alliance:
www.twitter.com/wballiance
http://www.facebook.com/WirelessBroadbandAlliance
https://www.linkedin.com/company/2919934/
SINGAPORE, 22 JULY 2021 – ANTlabs Pte. Ltd., an established network technology product and solutions provider for the hospitality industry, announces its partnership with Brantas Ltd., the leading integrator of hospitality technology in New Zealand and The Pacific. Both companies have been in the industry for more than two decades, thus combining long experience and expertise in providing better cutting-edge technology for its customers.
As more places are opening and people are returning to public venues, the expectation of getting seamless and good connectivity for their devices also increases. In addition, users now expect to stream their content, and traffic demand ballooned as more people go online for practically anything they need. ANTlabs gateways make handling such connectivity demands easy with their product features such as Advanced Quality of Service, Personal Area Network, and Security modules. Brantas found these helpful in managing their customers’ connectivity expectations.
“The addition of ANTlabs’ unique Guest Internet Access Gateway solution allows us to offer an end to end, turnkey package to aged- and health care facilities, hotels, conference centres, sports stadiums and other hospitality venues,” says Jan Strijker, General Manager of Brantas.
“Soon, Brantas will announce the completion of some high-profile implementations of ANTlabs in three countries in the region that Brantas services”, Strijker added.
Brantas uses the ANTlabs Service Platform as a managed solution for managing multiple venues, and it comes with 24/7 guest support.
“Partnering with Brantas will definitely strengthen our presence in New Zealand and the Pacific Islands. As a result, the users in this region will get to experience the superior and high-quality internet bandwidth management solution offered by ANTlabs and Brantas,” according to Kelvin Poh, ANTlabs Director for Global Partner Engagement.
……………………………………
About ANTlabs Pte Ltd.
ANTlabs Pte Ltd develops a wide range of network edge appliances, cloud-based platforms, bare metal appliances or virtualized telcos network infrastructure solutions for various business divisions and applications. ANTlabs was established in 1999 and headquartered in Singapore; its focus is providing products and solutions for the hospitality, large venues, telcos, and ISP industries. ANTlabs has established itself as a market leader, commanding a solid regional presence in Singapore with branch offices in South Korea, the Philippines, and United Arab Emirates (UAE).
About Brantas Ltd
Brantas was established in 2002 and has since developed into a leading hospitality technology solution provider. On the 1st of April 2021, Brantas was acquired by Baycom Communications. Brantas’ portfolio includes but is not limited to NEC PBX, CETIS Phone Handsets, FCS Workflow Management software. Together with Baycom, Brantas can offer Voice and Data Connectivity services and a New Zealand wide support network.
Excited members of Kansas-based cooperative embrace managed Wi-Fi offerings delivered via the full Revenue EDGE solution, including subscriber-facing applications in EDGE Suites—particularly the home-network security services in ProtectIQ
SAN JOSE, CA – July 22, 2021 – Calix, Inc. (NYSE: CALX) today announced that SCTelcom is continuing to dramatically transform its business and grow its value with Revenue EDGE. Most recently, SCTelcom achieved an extraordinary 200 percent increase in the adoption of its premium-level managed Wi-Fi package in just seven months and a 95 percent take rate of ProtectIQ®—a value-added EDGE Suites application that secures members’ home networks—only one year after launching. SCTelcom’s formula for success consists of leveraging the full Revenue EDGE solution: bundling ProtectIQ alongside the cutting-edge Wi-Fi 6 certified GigaSpire BLAST® system and the cooperative’s newly branded CommandIQ® mobile app, SCT WiFiConnect, into its three tiers of managed Wi-Fi service offerings. SCTelcom then leverages the real-time data insights of Calix Marketing Cloud to identify, segment, and target members based on their usage, resulting in experience-based offerings that excite members across southcentral Kansas and northcentral Oklahoma and drive new, recurring revenue streams.
A longtime Calix customer, SCTelcom began rolling out the full Revenue EDGE solution in 2019 to differentiate its brand and expand into new service territories. Since then, SCTelcom has continued to build on its early and impressive results, and now boasts a 76 percent mobile app attachment rate that gives members everything they need to control their home Wi-Fi experience at their fingertips and provides SCTelcom with a direct and branded communications channel to develop deep and continuous relationships with members. The managed Wi-Fi experience includes the capabilities of ProtectIQ which provides advanced security protection from threats such as malware, ransomware, and other types of increasingly sophisticated cyberattacks. By bundling ProtectIQ into all three tiers of its managed Wi-Fi service offerings, SCTelcom takes the complexity out of cybersecurity for its members.
A 2020 online survey of more than 1,200 broadband subscribers conducted by Calix, together with global technology analyst and advisory firm MOOR Insights & Strategy, found that most consumers inherently trust their service providers to protect their personal data. Moreover, most respondents identified their service providers as a top choice for home network security solutions.
“We recognize that whole home network security is no longer an option—it’s an absolute requirement as people spend more time working, learning, and entertaining online,” said Carla Shearer, CEO and general manager for SCTelcom. “We chose to include ProtectIQ with all three tiers of our managed Wi-Fi service offerings to differentiate from the competition with a highly sophisticated yet simple to use application that provides peace of mind to our members who are increasingly concerned about their online security. By leveraging the full power of the Revenue EDGE, we have seen a tremendous take rate of this value-added service in just one year, contributing to our overall 20 percent increase in managed Wi-Fi services adoption among our members.”
SCTelcom is further reducing operating expenses with the actionable insights from Calix Support Cloud. Remote management and troubleshooting capabilities, thanks to the seamless integration between SCT WiFiConnect and Support Cloud, provide unprecedented in-home network visibility, enabling customer support representatives to resolve issues quickly and proactively. As a result, SCTelcom has also reduced the number of inbound calls related to SSID password resets—the main reason for member-related support calls—and cut truck rolls by 30 percent in a single year.
SCTelcom leans on the expertise of Calix Premier Customer Success Services to accelerate time to value, implement best practices, and drive service adoption to maximize revenue. SCTelcom is applying these lessons, backed by the real-time data insights of Marketing Cloud, to successfully identify, segment, and target members based on their usage to help drive adoption of ExperienceIQ™, another EDGE Suites application that will excite members with enhanced parental control capabilities to block content or applications, set usage limits, and view usage information.
“SCTelcom is an innovative leader using the Revenue EDGE portfolio to its fullest potential, harnessing the power of the integrated Calix Cloud coupled with the convenience of mobile apps to simplify its operations, excite members with new, revenue-generating services, and grow its business,” said Michael Weening, president and chief operating officer for Calix. “This is what service providers of any size can accomplish when they embrace the power of the platform. Armed with real-time data and mobile notifications that provide a direct communication channel to members, SCTelcom is fueling rapid growth, creating seamless experiences and delighting members with value-added services for their connected home. As a trusted partner, we are thrilled to support SCTelcom’s ongoing success.”
Watch Carla Shearer’s session at ConneXions to learn more about SCTelcom’s journey with Calix, and view a replay of our recent webinar, “How to Offer the Premium Services That Subscribers Want.”
IEEE 802.11ah Solution Redefines IoT Connectivity with Fastest 8MHz Channel Throughput, Lowest Power Consumption and Smallest Size
SYDNEY and IRVINE, Calif., July 13, 2021 – Morse Micro, a fabless semiconductor company reinventing Wi-Fi® for the Internet of Things (IoT), today announced the availability of Wi-Fi HaLow system-on-chip (SoC) and module samples to early access partners and key customers. These samples, combined with Morse Micro’s easy-to-use evaluation kits, give developers the opportunity to evaluate the market-leading throughput, power efficiency and extended range of the company’s Wi-Fi HaLow solutions.
Morse Micro’s comprehensive Wi-Fi HaLow portfolio includes the industry’s smallest, fastest and lowest power IEEE 802.11ah compliant SoCs. The MM6104 SoC supports 1, 2 and 4 MHz channel bandwidth. The higher performance MM6108 SoC supports 1, 2, 4 and 8 MHz bandwidth and is capable of delivering tens of Mbps throughput to support streaming HD video. These Wi-Fi HaLow SoCs provide 10x the range, 100x the area and 1000x the volume of traditional Wi-Fi solutions.
Using narrow frequency bands in the unlicensed sub-1 GHz spectrum outside the highly congested 2.4 GHz traditional Wi-Fi band, Wi-Fi HaLow signals penetrate obstacles more easily and can extend beyond 1 km, connecting far-flung IoT devices across residential, retail, office park, campus, warehouse and factory environments. Developed specifically for the IoT and supporting the latest WPA3 security, a single Wi-Fi HaLow access point (AP) can connect up to 8,191 devices, simplifying network deployment and reducing costs.
“The massive capacity and extended range of our Wi-Fi HaLow solution, combined with market-leading power efficiency and 8MHz channel throughput, will redefine Wi-Fi connectivity for the IoT,” said Michael De Nil, co-founder and chief executive officer at Morse Micro. “As a co-chair of the Wi-Fi HaLow Task Group, Morse Micro is actively promoting Wi-Fi Alliance certification and progressing in the HaLow certification program. By delivering IEEE 802.11ah-compliant SoC and module samples for evaluation, we’re helping our partners and customers accelerate the market shift to Wi-Fi HaLow technology.”
Morse Micro’s standards-based Wi-Fi HaLow solutions leverage the industry’s most ubiquitous wireless protocol, Wi-Fi, to expand connectivity across the IoT ecosystem and overcome the fundamental weaknesses of existing wireless technologies by offering ultra-low power, longer range and secure connections at much higher capacities. Morse Micro’s diverse portfolio of SoCs, modules, software, IP and patents is playing a critical role in accelerating Wi-Fi HaLow deployment. The company’s Wi-Fi HaLow solutions address commercial, residential and industrial IoT markets in applications such as access control, security cameras, industrial automation, retail and mobile devices at throughputs and ranges that will enable new IoT use cases.
Purpose-Built SoCs for Wi-Fi HaLow Connectivity
Designed in compliance with the IEEE 802.11ah standard, Morse Micro’s Wi-Fi HaLow SoC family is poised to redefine low-power, long-reach Wi-Fi connectivity for the IoT. MM6108 and MM6104 SoCs provide a single-chip Wi-Fi HaLow solution incorporating the radio, PHY and MAC and offering data rates that range from tens of Mbps to hundreds of Kbps at the farthest range. The radio supports operation in sub-GHz ISM bands worldwide between 750 MHz and 950 MHz.
The MM6108 and MM6104 RF interface provides the option to use on-chip amplification for typical low-power, low-cost IoT devices, or an additional external PCB-mounted power amplifier (PA) or front-end module (FEM) for ultra-long-reach applications. The RF receiver utilizes a high-linearity low-noise amplifier (LNA).
Morse Micro’s low-power IC design, combined with the IEEE 802.11ah standard, enables extended sleep times and lower power consumption for battery-operated client devices, achieving longer battery life durations than other existing IEEE 802.11a/b/g/n/ac/ax generations.
Morse Micro MM6108 and MM6104 SoCs Key Features
Availability
Morse Micro’s Wi-Fi HaLow evaluation kits, as well as samples of the MM6108 and MM6104 SoCs and modules, will be available to early access partners and key customers starting late July. For more information about Morse Micro’s Wi-Fi HaLow solutions and to pre-order evaluation kits, visit morsemicro.com.
Morse Micro will demonstrate its Wi-Fi HaLow technology and evaluation kits at ISC West 2021, July 19-21, 2021. Contact Morse Micro to schedule a meeting at morsemicro.com/contact-us/.
Wi-Fi 6 is built to address the challenges of today’s connectivity landscape, leveraging new or enhanced versions of technologies like OFDMA and bi-directional MU-MIMO to manage the multi-user, simultaneous usage patterns that define modern Wi-Fi networks. However, peak Wi-Fi 6 performance depends on both expert implementation of these tools and the ability to use them together. Ensuring the right tool is applied to the right requirement and optimizing the combination of capabilities at any given moment has elevated the role of the network scheduler to one of singular importance. Simply stated, performance of the Wi-Fi 6 network scheduler is the best predictor of overall Wi-Fi 6 performance in a modern network.
Recently, Qualcomm Technologies, Inc. demonstrated, through technical analysis, the importance of a high-performance network scheduler and published that analysis in a new research-based whitepaper. Our decades-long pedigree, derived from intensive research and development, yields a highly optimized network scheduler delivering significant performance advantages when compared to either legacy single-user scenarios or to competitors’ offerings.
The analyses were developed to measure both throughput and latency, key performance indicators across multiple intense usage network deployments. In one use case, the analysis illustrates the impact of Qualcomm Technologies’ scheduling in delivering airtime fairness (as measured in throughput per device) in a mixed client environment with both Wi-Fi 6 and Wi-Fi 5 devices.
Analysis conducted in Qualcomm Technologies’ labs.
Equal airtime fairness in mixed client environments is a critical factor in delivering a seamless Wi-Fi experience. Qualcomm Technologies set out to determine the impact our high-performance scheduler had on such a scenario. The results show an equal allocation of capacity, providing faster connections across all devices – Wi-Fi 6 and legacy – resulting in a significant performance boost per device. With up to 90 percent higher throughput per device, every user’s connectivity experience improved.
To further illustrate the performance of a Qualcomm Technologies’ scheduler, a second analysis was constructed with two scenarios. In these scenarios, the performance results between an access point based on the Qualcomm Networking Pro Series Wi-Fi 6 platform and a competitor’s Wi-Fi 6 access point were compared. These scenarios ran latency-sensitive real-time traffic, side by side, with heavy uplink traffic across the same network.
Analysis conducted in Qualcomm Technologies’ labs.
These analyses highlight implementation superiority. They also demonstrate the significant role our highly optimized scheduler plays in the real-time balancing between OFDMA use for the benefit of multiple users with relatively small payloads or MU-MIMO for multiple users with large payloads without having to sacrifice on either throughput (with an increase of up to 75 percent where throughput is the KPI) or latency (with an overall decrease of up to 69 percent in use cases where latency is the KPI).
Overall, these analyses clearly illustrate that the full performance benefits of Wi-Fi 6 are only achieved through high-performance network scheduling. Qualcomm Technologies’ highly differentiated high-performance Wi-Fi 6 network scheduler is offered across our networking product portfolios, supporting our customers to deliver leading-edge connectivity in the home, school, public, and enterprise environments. From video conferencing and gaming to voice and beyond, unlocking the full benefits Wi-Fi 6 is transforming industries and empowering new and improved experiences for users.
HSINCHU, Taiwan, 2021 – Edgecore Networks, a leading provider of traditional and open network solutions for enterprises, data centers, and telecommunication service providers, is pleased to announce the launch of a series of open Wi-Fi access points preinstalled with the Telecom Infra Project (TIP) OpenWiFi image. Edgecore’s TIP OpenWiFi-ready access points offer users an open platform that works straight out of the box and which is also highly customizable. Edgecore cooperates with other members in the TIP OpenWiFi ecosystem to accelerate the pace of innovation in the Wi-Fi market by creating cost-effective disaggregated open source solutions aimed at improving global connectivity.
Edgecore Networks joined TIP’s Wi-Fi Project Group in 2019 and has contributed technology and experience in hardware and software disaggregation. Edgecore is proud to launch a range of open Wi-Fi access points preinstalled with TIP’s OpenWiFi image to further support the ecosystem, including two Wi-Fi 6 indoor access points, EAP101 and EAP102, three Wi-Fi 5 Wave 2 indoor access points, ECW5211-L, ECW5410-L, and SS-W2-AC2600, and one Wi-Fi 5 Wave 2 outdoor access point with optional cellular backhaul, OAP100. From SMB to MDUs to larger venues, Edgecore TIP OpenWiFi-ready access points can adapt to various usage and requirements. The all-in-one package allows users to save on time without the hassle of having to go through initial setup. If required, Edgecore products provide endless possibilities on its open platform for clients to expand accordingly. Furthermore, each access point has received multiple international certifications including FCC and CE, allowing each product to successfully enter local markets across numerous countries and regions.
Tengtai Hsu, Vice President of Edgecore Networks said, “As an active contributing member of TIP, Edgecore is excited about the positive collaboration that is being established among the members of the OpenWiFi ecosystem, which allows each member to excel in their area of expertise. Further, Edgecore highly prioritizes executing a roadmap that provides more high quality TIP OpenWiFi-ready products for adoption by the ecosystem. Edgecore is eager to utilize the synergy within the OpenWiFi ecosystem to develop, build, test, and deploy open, disaggregated, and standards-based solutions that deliver the high-quality connectivity that the world needs.”
“As a longtime TIP participant and supporter of disaggregation, Edgecore Networks is an active member in multiple project groups across TIP. We are excited to have Edgecore expand its support of TIP and its initiatives to include the OpenWiFi initiative,” said David Hutton, Chief Engineer, TIP.
Edgecore open Wi-Fi access points with TIP’s OpenWiFi image preinstalled are now available for order.
About Edgecore Networks
Edgecore Networks Corporation is a wholly owned subsidiary of Accton Technology Corporation, the leading networking ODM. Edgecore Networks delivers wired and wireless networking products and solutions through channel partners and system integrators worldwide for data center, service provider, enterprise, and SMB customers. Edgecore Networks is the leader in open networking, providing a full line of open 1G-400G Ethernet OCP Accepted™ switches, core routers, cell site gateways, virtual PON OLTs, optical packet transponders, and Wi-Fi access points that offer choice of commercial and open source NOS and SDN software.
For more information, visit wifi.edge-core.com or contact sales@edge-core.com.